翻訳と辞書
Words near each other
・ Euler's equations (rigid body dynamics)
・ Euler's factorization method
・ Euler's flycatcher
・ Euler's formula
・ Euler's four-square identity
・ Euler's identity
・ Euler's laws of motion
・ Euler's pump and turbine equation
・ Euler's rotation theorem
・ Euler's sum of powers conjecture
・ Euler's theorem
・ Euler's theorem (differential geometry)
・ Euler's theorem in geometry
・ Euler's three-body problem
・ Euler's totient function
Eulerian matroid
・ Eulerian number
・ Eulerian path
・ Eulerian poset
・ Euler–Bernoulli beam theory
・ Euler–Fokker genus
・ Euler–Heisenberg Lagrangian
・ Euler–Jacobi pseudoprime
・ Euler–Lagrange equation
・ Euler–Lotka equation
・ Euler–Maclaurin formula
・ Euler–Maruyama method
・ Euler–Mascheroni constant
・ Euler–Poisson–Darboux equation
・ Euler–Rodrigues formula


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Eulerian matroid : ウィキペディア英語版
Eulerian matroid
In matroid theory, an Eulerian matroid is a matroid whose elements can be partitioned into a collection of disjoint circuits.
==Examples==
In a uniform matroid U{}^r_n, the circuits are the sets of exactly r+1 elements. Therefore, a uniform matroid is Eulerian if and only if r+1 is a divisor of n. For instance, the n-point lines U{}^2_n are Eulerian if and only if n is divisible by three.
The Fano plane has two kinds of circuits: sets of three collinear points, and sets of four points that do not contain any line. The three-point circuits are the complements of the four-point circuits, so it is possible to partition the seven points of the plane into two circuits, one of each kind. Thus, the Fano plane is also Eulerian.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Eulerian matroid」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.